
1

Buckling of fibres and yarns within ropes and other fibre assemblies

R.E. Hobbs*, M.S. Overington, J.W.S. Hearle and S.J. Banfield

Tension Technology International Ltd, TTI House, Preston PR1 3NA, UK

* Address for correspondence: Department of Civil Engineering, Imperial College, London
SW7 2BU, UK

Individual yarns within ropes can be subject to axial compression even though the rope
as a whole is under tension.  This leads to buckling in sharp kinks and then to failure by
axial compression fatigue after repeated cycling.  An existing elastic theory, which
applies to heated pipelines subject to lateral and axial restraint, predicts alternative
modes of either continuous buckling or intermittent buckled zones alternating with slip
zones.  The mechanics of axially compressed yarns within ropes are similar, but the
theory has been extended to cover plastic deformation at hinge points.  The predicted
form of groups of saw-tooth buckles, which curve at the ends of the zones into the slip
lengths, is in agreement with observed effects.  Numerical calculation gives quantitative
predictions in agreement with experimental results, despite uncertainty about the
correct values for bending stiffness and plastic yield moment, depending on whether the
yarns act as solid rods or freely slipping fibre assemblies. 

1 INTRODUCTION

Fibre and wire ropes are primarily intended for service as tensile elements, but failure may
result from axial compression of parts of the cross-section, namely individual fibres, yarns or
strands, while the bulk of the rope is safely in tension.  Similar effects may occur in other
textile structures, such as carpets or industrial woven fabrics.  If the axial compression leads
to a mild rounded buckling, as in an elastic deformation, there will be little damage, but if, as
often happens, plastic yielding leads to sharp kinks, then fibres will fail in repeated cycling.  
In ropes, axial compression of individual components can arise from a number of causes
including:

C Bending.  If a rope under tension passes over a sheave (pulley) or is taken round any
other solid object with too small a radius, components inside the curve may be put
into compression.  Ropes may also buckle into bent forms or, at low or zero tension,
be forced to bend by transverse forces.

C Rope twisting.  If a parallel assembly of fibres is twisted in either direction at constant
length, the outer layers are forced into longer paths and so develop tension.  If the
overall rope tension falls below the value developed in this way, the rope will contract
and the central fibres will be put into compression.  In a simple twisted structure, an
increase of twist will cause the central straight components to go into compression,
whereas a decrease of twist will compress the outer components.  In more
complicated rope structures, with twist at several levels, the precise effects will
depend on the geometry, but twisting will always force some components into axial
compression in the absence of sufficient overall rope tension.  
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Twisting in tension-tension cycling can develop for two reasons.  If the rope is not
torque-balanced, tension will cause a torque to develop, and this can lead to the rope
twisting against a soft termination, such as a splice, or against other line components. 
Similarly, if other line components, such as connecting wire ropes, are not torque-
balanced, twist may be transmitted to the fibre rope.  Alternatively, if there is
nonuniformity along the rope, different sections of rope will twist against each other. 
All of these effects have been found in practice.

Buckling into three-dimensional curved paths also gives rise to twist.

C Length imbalance.  If, as a result of manufacture or subsequent handling and use, one
or more components of a rope is longer (parallel to the axis of the rope) at zero
tension than the other components, then the equilibrium state of the entire rope at zero
tension will have the longer components in compression and the shorter ones in
tension.  A critical positive tension is needed to eliminate axial compression in the
longer elements. 

Similar effects can clearly arise in umbilicals, armoured electrical and optical cables, and
hoses.  Indeed, the wider range of elemental properties in some of these products may make
sensitive elements such as optical fibres more rather than less likely to be put into
compression.

Compression by itself is not usually a major problem, rather it is the response to
compression, and how often this response is repeated which is of concern.  If a rope as a
whole is subject to an axial compressive force, it will buckle into a smooth curve with a
radius that is too large to cause fibre damage.  The only exceptions would be for very short
lengths of rope or where a rope is restrained from buckling by a lateral pressure.  The
common damaging situation is when a component within a rope is forced into compression
while subject to the restraint of neighbouring components, such as a sheave, or other rope
components which are still under tension.  In high strength fibre ropes, this restrained
buckling of the compressed element is known as kinking, and is a form of elasto-plastic
buckling of the fibre or group of fibres against the restraint afforded by the neighbouring
elements which are still in tension.

Kinking due to axial compression is a phenomenon that occurs on many scales from
mountain ranges to oriented polymer molecules.  In fibres, the effects at the molecular level
are shown by the presence of kinkbands, which run across the fibres at about 45E, when
fibres are uniformly compressed, or,  more commonly, on the inside of bends.  Repeated
flexing of fibres leads to failure, either due to breakdown along kinkbands or to axial splitting
from the accompanying shear stresses.  As described by Hearle et al (1998), these forms of
failure have been observed in laboratory flex tests and in ropes and carpets after cyclic
loading.  In typical test conditions, failure may occur in around 1000 cycles in aramid fibres,
Hearle and Wong (1977), but polyester and nylon fibres would last longer, Hearle and
Miraftab (1991).  Data from yarn buckling tests carried out for FIBRE TETHERS 2000
(1995), show severe strength loss in aramid yarns after 20,000 cycles, in HMPE yarns after
200,000 cycles and in polyester yarns after 1,000,000 cycles.

The first reported engineering failure in an aramid rope due to axial compression fatigue was
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in the mooring lines for the construction ship Ocean Builder I used in the erection of the Lena
tower in the Gulf of Mexico in 1983, Riewald (1986) and  Riewald et al (1986).  The lines
were deployed on buoys in 1045 feet of water 4-6 weeks before the arrival of the ship.  On
recovering and tensioning, four ropes failed, reportedly at 20% of rated strength.  The failure
was very thoroughly investigated and explained in the following way.  Torque generated in
the ropes due to wave action led to rotation, causing shear and compressive strains, which in
turn led to fibre kinking with an accompanying loss of strength.  Laboratory studies and
ocean deployments, resulting from the investigation of this failure, gave more examples of
kinking occurring due to axial compression.  Gross kinks were seen in yarns and severe fibre
damage was shown up as strongly dyed bands at regular intervals along the yarns.  The study
of this failure led to improved rope constructions and procedures as a way of avoiding axial
compression fatigue.

The occurrence of axial compression fatigue in various types of fibre ropes was found after
tension-tension cycling in the joint industry study, FIBRE TETHERS 2000 (1995).  Samples
of these ropes were made available for microscopic examination in the Department of
Textiles at UMIST, with results reported by Hearle et al (1998).  The observed effects
included the following :

C a wavy buckling of yarns or strands, at fairly low curvature, which would not be
likely to cause serious damage to fibres

C kinkbands running across fibres indicating regions of uniform axial compression

C sharp kinks of fibres as a whole, usually occurring cooperatively across yarns

C breaks of fibres along kinkbands within fibres

C axial splits, which would have been caused by fibre bending

Commonly, the sharp fibre kinks, with internal damage that could be picked out by dyeing
aramid yarns, occurred in groups in zig-zag sections separated by straight lengths.  This, in
turn, led to broken pieces, which were a few millimetres in length, followed by unbroken
portions, which were a few centimetres long.  Some examples are described later in this
paper.

2.  ANALYSIS

2.1 Approach to modelling

The observed failure modes in a rope suggest that an element of a rope fails by buckling
because it is carrying an axial compressive load even though it is laterally restrained by
adjacent elements carrying tension.  The phenomena appear at a number of different scales in
a rope : a sub-rope may buckle in a multi-rope assembly, a strand may buckle while
restrained by adjacent strands, or a yarn fail when restrained by adjacent yarns.  It is also
observed that the buckles become more severe as the elements get smaller.  Ropes and
strands take up gentle, harmless elastic curves, while yarns and particularly the individual
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filaments in them form much more deleterious plastic hinges or kinks, kinks which are
apparent even at the molecular level.  This part of the paper models the buckling of the
element by examining the theory behind the buckling of a semi-infinite beam-column
carrying an axial load whilst laterally supported by other elements.  The beam is assumed to
be elastic initially, and then to yield at a known "plastic hinge" moment.  Two classes of
buckles are considered, namely general periodic modes and localised modes, which are more
damaging in practice because of energy inputs from adjacent, unbuckled, areas of the beam. 
The elastic behaviour of such a beam is, fortunately, fairly well understood because it has
proved to be of economic importance in many other areas.  The plastic behaviour has not,
apparently, been examined before, and it is developed ab initio here, based on the premise
that it is preceded by elastic buckling, which may be non-damaging in itself but which
triggers the plastic buckling.

2.2  Elastic Buckling

As noted above, there is a large volume of earlier work on the lateral buckling of long beams
against lateral restraint, related to the lateral buckling of railway tracks and, later, submarine
pipelines.  The lateral restraining force may be elastic, i.e. proportional to the lateral
displacement, or frictional, i.e. of constant magnitude and opposing further growth of
deflection.

However, for a linearly elastic lateral restraint only a periodic mode (Mode 4 of Fig.1) is
possible, and the observed presence of localised modes in ropes suggests that the "frictional"
or constant force lateral restraint model, where localised modes (Modes 1-4 of Fig.1) are
possible, is a better choice.  This view is reinforced by the presence of a radial pressure p on
the buckling element in a rope under tension due to the helical nature of adjacent elements or
any braided jacket.  This pressure is, to the first order, unaffected by any buckle, and the
lateral restraint on unit length of the element is therefore taken as pd, where d is the diameter
of the element.  The analysis that follows is then very close to that for submarine pipelines by
Hobbs (1984) and Hobbs and Liang (1989), so that it is only presented in summary here.

In the notation of Fig.2, the governing differential equation for the buckled beam is

where a prime denotes differentiation of the displacement y with respect to the longitudinal
coordinate x, m=pd/EI and n2=P/EI.  E is Young's Modulus for the beam, I its effective
second moment of area, P the compressive axial load and L the buckle half-wavelength.  The
solution to this differential equation is presented in Hobbs (1984), but proceeds by
considering the boundary conditions for the various modes, whether localised or periodic,
and in each case gives a relationship of the form:
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The other important element in the analysis is to recognise that as the buckle forms the force
in it drops to maintain displacement compatibility.  In the pipeline analysis, and with equal
validity here, the axial load is displacement controlled rather than force controlled.  In the
pipeline the axial force is induced by the restraint of thermal expansion, and if (by buckling)
the line can take up a slightly longer path the force will be reduced to some extent.  Likewise,
in the rope the compressive force will be reduced by buckling.  Considering the 4 mode first,
if the force just before buckling is Po, and falls to P on buckling, displacement compatibility
for a buckle of length L requires the change in arc length around the buckle to match the
growth in length due to the force change, or:

where A is the cross-sectional area of the beam.

Using the solution to the differential equation (1), the integral on the left hand side can be
evaluated and equation (3) rearranged to yield an equation of form:

Turning to the localised modes, Modes 1-4, equations (2) and (3) will be modified by two
factors.  The first is trivial, in that the total length L̄ (measured over the 1 to 4 halfwaves as
appropriate) of the buckle should be considered.  The second is more basic, and recognises
that the compatibility condition, equation (3), should be modified to include the influence of
two 'slipping lengths' adjacent to the localised buckle (Fig.3).  The slip lengths form to
accommodate the difference between Po, the force remote from the buckle which is
unchanged by the formation of the buckle, and the lower force P, within the buckle itself. 
The slip length, Ls, is determined by the effective friction between the beam and the
surroundings.  If the friction coefficient is µ, and the radial pressure p on a beam of diameter
d, or perimeter πd, then:

The slip lengths on either side of the buckle then feed some displacement into the buckle,
equal to the average force change in Ls times the length divided by the axial rigidity.  The
inward movement s each side is thus:

The compatibility condition, equation (3) becomes:
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substituting for Ls from equation (5) and for s
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(y ))2 ' (Po & P) L̄
EA

% (Po & P)2/(EAµpπd)

(7)

P ' 4π2EI/L 2 (8)

Po ' P % 4.7050 x 10&5 AE(pd/EI)2 L 6 (9)

ŷ ' 4.4495 x 10&3 pd
EI

L 4 (10)

M̂ ' 0.05066 pd L 2 (11)

ŷ ) ' 0.01267 pdL 3/EI (12)

P ' k1
EI
L 2 (13)

The solutions to this quadratic in (Po-P) for the various localised modes lead to a series of
relationships similar to equation (4).  The details and, more usefully, the results are given in
Hobbs (1984) and Hobbs and Liang (1989), and re-presented here recognising the
correspondence (i) between w in Hobbs and Liang (1989) and µpπd here, and (ii) between
µLw for modes 1-4 in Hobbs and Liang (1989), or φw for the 4 mode in Hobbs (1984) and pd
here.

For the 4 mode:

The maximum amplitude of the buckle

and the maximum bending moment

while the maximum slope

The results for modes 1-4 can be presented in a common format.  Taking the half-wavelength
of the most significant part of the buckle as L in each case (Fig.4), and using the constants of
Table I, the reduced axial force within the buckle is given by

Then
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Po ' P % k3µpπdL 1 % k2
AEpdL 5
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&1 (14)

ŷ ' k4 pdL 4/EI (15)

M̂ ' k5 pd L 2 (16)

M̂ ' Mp ' k5 pd L 2 (17)

The maximum amplitude of the buckle

while the maximum moment

Table I
Constants for Lateral Buckling Modes

Mode
Constants

k1 k2 k3 k4 k5

1
2
3
4

4

80.76
4π2

34.06
28.20

4π2

6.391 x 10-5

1.743 x 10-4

1.668 x 10-4

2.144 x 10-4

0.5
1.0

1.294
1.608

2.407 x 10-3

5.532 x 10-2

1.032 x 10-2

1.047 x 10-2

4.4495 x 10-3

0.06938
0.1088
0.1434
0.1483

0.050664.7050 x 10-5

2.3  Plastic Buckling

2.3.1 Infinite mode

As noted earlier, it is assumed that elastic buckling defines the shape from which plastic
buckling grows.  In particular, the buckle length at which the first plastic hinge forms in the
various modes can be determined from equation (11) for the 4 mode, or equation (16) for
modes 1-4  by putting
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ŷ ' ŷp % 0.5Lpθ (18)

Mp ' Ppŷp ' P(ŷp % 0.5Lpθ) (19)

P ' Ppŷp /(ŷp % 0.5Lpθ) (20)

(Pop & Pp) Lp /EA ' ep, say (21)
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where Mp is the fully plastic moment (hinge moment) for the buckling element.  Assuming
that such a moment can be calculated for a bundle of filaments, equation (17) defines the
buckle length in the various modes at the onset of plasticity.  Given this value of L, denoted
Lp to flag the onset of plasticity, equations (8)-(10) for the 4 mode, and (13)-(15) for modes
1-4 then define the maximum amplitude, ŷp, the force in the buckle, P p, and the axial force
remote from the buckle, Pop, all at the onset of plasticity as the subscript indicates.

Concentrating first on the periodic 4 mode, it is assumed that following the onset of plasticity
the half-wavelength remains constant at Lp, but the amplitude grows and the waveform
changes to a sawtooth form (Fig.5) because the curvature is concentrated at the hinges. 

If the (small) slope of the incremental displacement "sawtooth" is θ, the amplitude (Fig.5)
grows from ŷp to

Since the maximum moment in the elastic curve is Mp and remains constant as the plastic
"mechanism" develops, then

It might be noted that the lateral force per unit length, pd, does not appear in equation (19)
because it cancels.

Equation (19) may be rearranged to give

In essence, because the amplitude grows while the moment remains constant, the axial load
in the buckle must fall.

A second condition exploits the idea of displacement compatibility which was so important
in the elastic analysis.  Just before the onset of plasticity, the force in the buckle is Pp, which
is less than the prebuckling force Pop, so that the length Lp must have extended by

It is also worth recalling that this extension matches the arc length term

The extension, or "endo", changes as the plastic buckle develops and the force changes to P,
with which is associated a prebuckling force Po.  (Po is none too easy to visualise in the 4
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e ' (Po & P) Lp /EA (22)

∆e ' e&ep ' 2
Lp

2
(1&cosθ) ' Lpθ

2/2 (23)

(Po & P) & (Pop & Pp) ' EAθ2/2 (24)

Po ' P % (Pop & Pp) % EAθ2/2 (25)

mode, but in modes 1-4 is the force in the beam well away from the plastic buckle).  The new
value of e is

The change in endo, e-ep, is associated with additional "arc length" effects, which are easy to
evaluate for the sawtooth incremental form of Fig.5:

for small θ.  Substituting for e and ep, and rearranging

or

Equations (20) and (25) are of practical use, taken with equation (18).  Equation (20) defines
P as a function of θ, and equation (25) gives Po(θ).  Equation (18) allows the results to be
plotted as a function of the peak amplitude of the buckle, a parameter which can also be used,
Hobbs (1984), to present the elastic results.

2.3.2 Modes 1-4 

The approach is to combine the ideas developed for the mode 4 plastic buckling, and the
concepts employed in treating the elastic buckling modes 1-4.

To make progress, it is necessary to make some assumptions concerning the likely
incremental geometry of the various plastic buckling modes.  The first assumption is that the
plastic buckle lengths are similar to the elastic ones, and the second group of assumptions
concern the number and location of hinges in the collapse mechanisms (Fig.6), and some
other geometric details such as the amplitude ratio in mode 4.

With these assumptions, it is possible to find, for each mode:

(i) equations defining the buckle amplitude analogous to equation (18);
(ii) equations analogous to equation (20) for the reduced value of P in the plastic buckle; 
(iii) equations analogous to equation (23) for ∆e leading to results comparable to a

combination of equations (14) and (25) for the force Po remote from the buckle.  

In detail, then, the amplitudes are given by
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ŷ ' ŷp % c3 Lp θ (26)

P ' Ppŷp/ŷ ' Ppŷp/(ŷp % c3Lpθ) (27)

∆e ' c1Lpθ
2 (28)

2∆s ' 2(s&sp) ' (Po&P)2 & (Pop&Pp)
2 /(EAµpπd) (29)

∆e ' 2∆s % (Pp&P)L̄p/EA (30)

∆e ' 0.983 Lpθ
2,

L̄p ' 2k3Lp ' 2.588Lp

P ' Ppŷp/(ŷp % 0.5Lpθ)

Po ' P % (Pop&Pp)
2 % 0.983Lpθ

2EAµpπd & 2.588Lp(PP&P)µpπd 0.5 (31)

and the force P by

where c3 is a constant given in Table II for the various modes.

The changes in arc length are

where the coefficients c1 are also given in Table II.

As the plastic buckle forms, three effects are apparent:

(i) the load in the buckle drops from Pp to P, while the equilibrium value of the force
remote from the buckle falls from Pop to Po;

(ii) e increases by ∆e (equation (28));
(iii) the slip into the buckle increases by ∆s each side or 2∆s in total, where

The incremental compatibility condition then becomes

where the second term on the right hand side represents the incremental extension of the
whole buckle as it develops plastically.  

Taking mode 3 as an example:

Substituting these results and equation (29) into equation (30) and rearranging, Po is found as
a function of θ

In general, for modes 1-4:
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Po ' P % (Pop&Pp)
2 % c1Lpθ

2EAµpπd & c2Lp(Pp&P)µpπd 0.5 (32)

where the constants c1 and c2 are given in Table II.

Table II
Constants for plastic lateral buckling

Mode
Constants

c1 c2=2k3 c3

1
2
3
4

0.35
0.608
0.983
0.830

1
2

2.588
3.216

0.35
0.346
0.5
0.4

Operationally, for each mode equation (27) defines P as a function of θ, and equation (32)
then gives Po(θ).  Equation (26) allows the results to be plotted as a function of the amplitude
of the buckle, ŷ.

3.  APPLICATION OF MODEL

3.1 Role of imperfections

The general form of the results of the foregoing analysis is summarised in Fig. 7, together
with a schematic presentation of the effects of various imperfections in rope lay up. The
figure shows plots of buckle amplitude against the axial compressive load on a rope
component at a position remote from the buckle. 

Fig. 7(a) focuses on the purely elastic behaviour, and is indicative of the phenomena
encountered in any of the localised modes, Modes 1-4, which are of greater practical
importance than the infinite mode.  Using equations (14) and (15), the upper curve is the
locus of force and amplitude in an initially perfectly straight rope element in static
equilibrium, an “equilibrium path”. The descending part of this curve, from A to B, consists
of points in unstable equilibrium, while the rising part of the curve is stable. The consequence
is that if a perfect system were brought by some means to a point such as A and released it
would not stay put, but would instead snap dynamically to some position with a much greater
amplitude and wavelength such as C. It is not easy to visualise just how a perfectly straight
rope element might be made, still less taken up to point A, but in the classical literature in
this field it was widely thought that the minimum of curve AC, point B, represented a force
below which buckling could not occur in a perfect axially loaded element.  The lowest
minimum for modes 1-4 was for some time regarded as a “safe load” (or in thermally loaded
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beams, equivalently, as a “safe temperature”) for use in design with an appropriate safety
margin.

However, once engineers began to address the effects of the initial imperfections which are
inevitably present in real railway tracks and pipelines, it rapidly became clear that the “safe
temperature” was a potentially dangerous illusion.  This may be seen from the three curves
from D1, D2, D3 in Fig. 7(a), where the effects of  three different initial amplitudes of buckles,
or irregularities, are sketched. All of them erode the “safe load” at B to some extent. The first
curve indicates the consequences of a small initial misalignment: a curve rising from D1 to a
peak at E before falling to a minimum below B before rising again to meet the perfect curve
asymptotically near C. The falling part of this curve, too, is unstable, so that an imperfect
beam subjected to a load gradually increasing from zero would only follow path D1 as far as
E before suddenly losing stability and snapping to F on the rising part of the curve. Larger
imperfections D2 and D3 show respectively a smaller snap at a lower load, and a monotonic
(albeit nonlinear) rising behaviour. At large enough amplitudes all of the imperfect curves
converge asymptotically to the perfect response.

It is certain that the elements of a rope are no more likely than a pipeline or railway track to
be perfectly straight at zero load. As well as any imperfections in the manufacturing process,
the helical lay of, say, a core strand will predispose the strand to buckle in different directions
within a given lay length, while the gaps between the neighbouring strands will inevitably
provide a lower radial pressure locally than the uniform radial pressure assumed in the
analysis, as well as some space for the core strand to deform into. Thus even before the
question of the possibility of plastic hinge formation in the strand is addressed it is clear that
a strand is likely to be affected by significant initial imperfection effects in the same way as
the pipelines whose analysis suggested this treatment.

Fig. 7(b) outlines some of the possibilities once the formation of plastic hinges is postulated.
As the amplitude of buckles increases, so does the maximum bending curvature, which will
eventually reach the plastic yield condition.  In principal, depending only on the plastic yield
moment of the yarn or strand under consideration, a plastic hinge could occur at the crest of a
buckle at any amplitude, whether small or large.  The “perfectly straight case” is represented
by the lines from H1, H2, H3, H4.    The plastic responses, which are superimposed on the
curve ABC from Fig. 7(a), peel off from the elastic equilibrium path and drop below it,
before rising again at rather large amplitudes. It was noted above that the perfect path would
snap from A in the elastic case: in the plastic case the snap would be more vigorous because
it would be to a much larger amplitude than that on the elastic rising path.

The behaviour of the elasto-plastic imperfect system is illustrated in Fig. 7(b) by “snapping”
from the curve D1 of Fig. 7(a).  Some interesting possibilities arise. Taking hinge formation at
the first of the four amplitudes selected in the perfect case, at H5, plasticity would develop
well before E, the peak of the elastic imperfect curve, and cause a snap at once to a rather
large amplitude. At this point it is worth recalling that although the amplitude grows in a
plastic buckle it has been assumed in the analysis above that the wavelength, defined as it is
by the hinge positions, does not change: in this it differs from the elastic analysis where
amplitude growth goes hand in hand with wavelength growth.
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Prediction of hinge formation at equilibrium positions like H6,  H7, H8 would imply that a
strand under load increasing steadily from zero would first reach point E.  For the cases, H6
and H7, it would then start to snap elastically, but, when the critical amplitude was reached
would peel off the unstable dynamic buckling curve to form hinges at amplitudes H6 and H7,
close to those of H2 and H3 respectively.  The snap would continue at constant wavelength
towards the rising part of the plastic equilibrium paths from H6 to H7, joining asymptotically
around G. For case H8, there would also be snap at E, but to the elastic line, which would be
followed until the plastic hinge formed at H8, close to H4. 

As noted below, buckling in rope yarns has been observed where realistic numerical values
for the yarn and fibre properties seem to be consistent with the small amplitude/short half-
wavelength formation of plastic hinges. A history like D1 H5 or D1 E with a snap towards G at
constant wavelength would provide a plausible explanation for the observed condition of the
yarns. 

It is recognised that much of the above discussion is heuristic, but it appears to cast light on
phenomena which have been the subject of much debate among the authors.  Without
information on the nature of imperfections - and a more complicated theory - it is not
possible to make a prediction of the response based on independent input data.  However, the
plastic deformation equations can be solved if an arbitrary choice of the amplitude, and hence
also the half-wavelength and slip length, of buckles is made.

3.2 Numerical calculation

A computer program has been written to determine solutions to the equations.  Calculations
applicable to an aramid (Twaron 1000) rope, for which experimental observations are given
in the next section, have been carried out.  This rope was tested in tension-tension cycling at
38+24% break load. The rope has a “wire-rope construction” with 6 strands round a single
core strand.  Each strand is composed of 6-round-1 rope yarns.  The core rope yarns in each
strand contain 7 “textile” yarns, as supplied by the fibre manufacturer; the outer rope yarns in
each strand contain 5 “textile” yarns.  The calculations relate to the core rope yarn of the core
strand.  The relevant parameters in SI units, with conversions in brackets are as follows.  The
symbols relate to the rope yarn, which is the basis for the calculation, and the values used in
the computation are put in bold.

FIBRE: linear density = 1.7E-7 (1.7 dtex); density = 1.44E3 (1.44 g/cm3); area = 1.7E-
7/1.44E3 = 1.18E-10 (1.18 x 10-4 mm2); diameter = /(4A/π) = /(4 x 1.18E-10 / 3.142) =
1.226E-5 (12.26 µm).

“TEXTILE” YARN: 1000 fibres; linear density = 1.7E-4 (1700 dtex); total fibre area =
1.18E-7 (0.118 mm2); diameter of equivalent solid rod = /(4 x 1.18E-7 / 3.142) = 3.876E-4
(0.3876 mm).  Assume packing factor = 0.7: area = 1.68E-7 (0.168 mm2); diameter  = /(4 x
1.68E-7 / 3.142) = 4.625E-4 (0.46 mm).

ROPE YARN (strand core): 7 “textile” yarns; linear density = 1.19E-3 (1190 tex); total fibre
area = 8.26E-7 (0.826 mm2); diameter of equivalent solid rod = 1.03E-3 (1.03 mm).
Assuming packing factor = 0.67: area A = 1.23E-6 (1.23 mm2); diameter d = /(4 x 1.23E-6 /
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3.142) = 1.25E-3 (1.25 mm), which was the measured diameter.

ROPE: number of “textile” yarns = (7 x 7) in strand cores + (7 x 6 x 5) in strand outers =
259; total fibre area = 3.05E-5 (30.5 mm2).  Assume packing factor of 0.635: area = 4.80E-5;
diameter =  /(4 x 4.80E-5 / 3.142) = 7.82E-3 (7.82 mm), which was the measured diameter.

MECHANICAL PROPERTIES: fibre modulus = 7.8E10 (78 GPa); for packing factor of
0.67, yarn modulus E = 5.23E10 (52.3 GPa).
Fibre yield stress = 5E8 (0.5 GPa); this is the value given by van der Zwaag and Kampschoer
(1987) for Twaron; Allen (1987) gives 0.37 GPa for Kevlar.  Yarn yield stress (corrected for
packing) fy = 3.35E8 (0.335 GPa). 
Coefficient of friction µ = 0.15; measurements in FIBRE TETHERS 2000 (1995) gave values
between 0.12 and 0.19.

RADIAL PRESSURE: p = 1E8 (0.1 GPa).  The minimum tension in the fatigue testing was
14% of break load.   The rope has a nominal break load of 5 tonne (50 kN), which, since it
contains 259 yarns, would give a tensile strength of approximately 1.15 GPa and a minimum
tensile stress on the rope of approximately 0.16 GPa.  This implies that the radial pressure
would equal 63% of the tensile stress.  Calculations carried out using a computer program
OPTTI-ROPE from TTI Ltd gave values of radial pressure between 0.07 and 0.18 Gpa.

Although there is uncertainty in some of the above values, the major problem is in deciding
the values to take for the bending stiffness and the plastic bending moment of the yarn. 
These quantities depend on the frictional interaction between fibres in the yarn, and may
change as a buckle develops and the stresses in the rope change.  One extreme is that the yarn
acts as a solid rod.  The other extreme to be considered is a yarn with free sliding between
fibres.  This case assumes no frictional interaction between fibres, but has cooperative
buckling of individual filaments so that the lateral and axial restraints in the model would act
on the yarn as a whole.  The experimental observations indicate that it is rope yarns that
buckle, and this is assumed in the following calculations.  Other options would be buckling
and slipping of strands, “textile” yarns, or, most unlikely of all, individual fibres. 

As noted above, there are two bounds to the bending stiffness and the plastic moment values,
with the expectation that the truth will lie somewhere between these limits. Consider the
bending rigidity EI first. The upper limit, the solid rod, has a second moment of area, I =  d4 /
64 where d is again the yarn diameter, and the influence of the voids between individual
fibres is accounted for by reducing Young’s Modulus from the fibre value to the yarn value
of 52.3GPa. The lower limit is simply the second moment of area of an individual fibre,
multiplied by the number of fibres in the yarn. This value should be multiplied by the fibre
modulus to produce the correct value of the bending rigidity EI. In practice, to avoid having
to input both the fibre and yarn moduli separately, the value of I calculated here was scaled
up by dividing it by the packing fraction and the correct EI produced by using the yarn
modulus. Thus the limits on I used here were:

SOLID ROD: Second moment of area I = 1.20E-13 (0.120 mm4); EI = 6276 Nmm2

FREE SLIDING FIBRES: Second moment of area I = 7.76E-18 / 0.67 (11.58E-6 mm4); EI =
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0.606 Nmm2

Turning to the calculation of the limits on the fully plastic moment of the rope yarn, it has
been noted that the fibre yield stress in compression (0.5 GPa) is very much smaller than that
in tension. As yielding develops this means that the bending neutral axis shifts towards the
tension side of the fibre and at the limit a very small tension area at very high stress balances
the rest of the fibre cross section which is yielding in compression. Simple statics then
suggests that the fully plastic moment of the fibre is r3 fy, where r is the fibre radius, and the
fully plastic moment of the bundle of N fibres is just:

Mp = N  r3 fy (33)

At the other, solid rod, limit the same concept is exploited (rather speculatively) with the
yield stress reduced to the yarn value of 0.335 GPa to give:

Mp =  d3 fy / 8 (34)

where d is now the yarn diameter.

Substituting the values quoted earlier, the plastic moment limits are:

SOLID ROD. Mp = 2.57E-1 Nm (257 Nmm)

FREE SLIDING FIBRES. Mp = 2.53E-3Nm (2.53 Nmm)

It is worth noting at this point that the computer program written using the analysis presented
in this paper does not input Mp directly. Rather, the values of the plastic buckle length given
by substituting the limits on Mp into equation (17) were recorded (for Mode 4 the values are
3.72 mm for the solid rod and 0.369 mm for the free sliding fibres). In addition it should be
recognised that the co-existing compressive force in the element at buckling will reduce the
effective plastic moment. With the area of 1.23 mm2, an axial force of 300 N will give a
compressive stress of some 0.26 GPa or roughly 50% of yield, cutting Mp by the same
proportion.

Substitution of the numerical values in the equations gives values of buckle length, buckle
amplitude, and slip length between buckles.  The dimensional quantities are known to a good
approximation, and a sensitivity analysis shows that only small changes are introduced by
varying the modulus E, the coefficient of friction µ, or the radial pressure p by factors of two
either way.  Large changes come from the big differences in bending properties.

Figures 8 (a) and 8(b)show the solutions for the mode 4, perfect, elastic and elasto-plastic
buckling for the solid rod and the free sliding of fibres in the rope yarn.  Values of the buckle
amplitude, buckle length and slip length at the elastic minimum point B are given in Table
III.

Table III
Predictions for mode 4, perfect elastic buckling.
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At point B Solid rod Free sliding

buckle amplitude(mm) 1.22 0.0165

half-wavelength(mm) 8.75 0.296

slip length(mm) 19.70 1.84

We next consider the departure of the plastic curve from the elastic curve.  For the solid rod,
the plastic buckle length is [3.72] mm, which is less than the value of [8.75] mm at the elastic
minimum.  This causes the computer program to produce the square root of a negative
quantity, suggesting that plastic buckling would not occur in the “perfect” case.  However, this
is not a problem when imperfections are present, as described in the previous section.  Since
the departure in the imperfect case may occur at various lengths, it was arbitrarily assumed
that plasticity might occur at buckle lengths of [8.75] (equal to the elastic minimum), [7.5] or
[10.0] mm.  For the free-sliding buckling, the elastic minimum is at [0.296] mm, and the
calculations have also been made for [0.25] and [0.350] mm.  The results of the calculations
are shown in Table IV.  Other values of EI are selected for intermediate cases between the
solid rod and free sliding, as shown in the lower part of Table IV.  The buckle lengths are at
the elastic minima.  The results cover a wide range, due to the uncertainties in the bending
behaviour of yarn subject to lateral pressure and to the arbitrary choice of buckle length. 
However they are qualitatively compatible with a response which matches the observed values
given in the next section.

Table IV
Predictions for mode 4, elasto-plastic buckling

SOLID ROD CASE FREE SLIDING CASE

         EI, Mp = 6276 Nmm2, 257 Nmm 0.606 Nmm2, 2.53 Nmm

half wave-length (mm) 8.75 7.5 10 0.296 0.25  0.35

buckle amplitude (mm) 1.87 1.62 2.8 0.027 0.014 0.044

slip length (mm) 19.7 9.52 35.5 1.84 0.92 3.55

INTERMEDIATE CASES EI = 627 EI = 62.7 EI = 6.27

half-wavelength (mm) 3.56 1.62 0.653

buckle amplitude(mm) 0.534 0.228 0.065

slip length (mm) 8.65 6.14 2.72

3.3 Sensitivity

The results in the previous section show the major influence of the bending properties on the
buckling response. As slip develops radially inwards at an incipient hinge in the solid rod, the
effective second moment of area will fall progressively. It might be expected that at some
point the buckle wavelength will “gel” (in cooperation with the imperfections which are



17

present) and a full hinge will form at constant buckle length. The range of buckle lengths
between the solid rod and cooperating fibre limits certainly includes those found in the tests,
described below.

In addition, although the uncertainty in the bending stiffness does place limitations on the
quantitative use of the present analysis, it is still useful to indicate the effects of changes in the
other parameters involved. Table V gives results (for the two limiting cases of the bending
properties) which indicate the influences of halving (one at a time) Young’s modulus, E, the
radial pressure, p, and the friction coefficient, µ.   Perhaps the most interesting effect revealed
by this parametric study is the large influence of the friction coefficient on the slip length and
hence the minimum gap between buckle groups, which is (as noted earlier) twice the slip
length.

Table V
Sensitivity predictions: values changed from standard in bold type

INPUT VALUES         SOLID ROD CASE       FREE SLIDING CASE

E (GPa) 52.3 26.2 52.3 52.3 52.3 26.2 52.3 52.3

p (GPa) 0.1 0.1 0.05 0.1 0.1 0.1 0.05 0.1

µ 0.15 0.15 0.15 0.075 0.15 0.15 0.15 0.075

CALCULATED 

half -wave length (mm) 8.75 6.76 10.19 8.98 0.296 0.253 0.346 0.307

buckle amplitude (mm) 1.85 1.63 1.77 2.18 0.027 0.028 0.027 0.033

slip length (mm) 19.7 9.79 24.1 35.3 1.84 1.48 2.27 3.18

4.  OBSERVATIONS OF KINKING

In the joint industry study, FIBRE TETHERS 2000 (1995), ropes with 5 and 120 tonne break
loads were subject to tension-tension fatigue over a variety of ranges.  The ropes were made in
several different constructions from aramid, HMPE, LCP and polyester fibres.  When cycled
between a higher tension and low enough values of minimum load, there was evidence of
axial compression fatigue.  By marking the ropes with strips of adhesive tape, it was possible
to observe twisting in some tests.   Ropes, which were not torque-balanced but were
terminated with splices, showed a cyclic rotation at the centre of the test length.  This is
explained by varying tension causing a varying torque, which then leads to a cyclic twisting of
the rope against the low torsional resistance of the splices at each end. In some other tests,
with rigid terminations, there was relative rotation in different parts of the test lengths due to
rope variability.  Another cause of axial compression is a difference in component lengths.
Axial compression in one rope was attributed to tension in a braided jacket.  The tightness of
the jacket indicated a strong radial component of yarn tension.  In the helical braid, the axial
component of tension in the jacket yarns puts the core into compression.

A number of these ropes were examined to observe the form of damage.  One technique used
in studying aramid ropes was to dye the yarns with a red dye (Kodak 8314 p-
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dimethylaminocinnamaldehyde).  The dye is selectively absorbed into damaged regions.  In
typical observations, sharp red bands about 0.5 mm wide were observed crossing the yarns. 
Sometimes these were single bands, which would correspond to mode 1 above; in other
places, there were groups of several bands, corresponding to a higher mode.  The damaged
areas were separated from one another by undamaged lengths of yarn, qualitatively in accord
with the theoretical predictions.

Rope samples were also studied by visual examination, photography, optical microscopy and
scanning electron microscopy.  A few examples will be shown here, but a larger selection of
the observations are reported by Hearle et al (1998).

The Twaron rope specified in section 3.2, which was cycled at 38+24% break load with resin
socket terminations, failed after 173,950 cycles.  The core rope yarn of the core strand had
many breaks distributed over the entire length.  Unbroken portions of other yarns retained
between 72.5 and 84.3% of their strength, but some individual break values were as low as
63% strength retention.  Thus the failure is compatible with break at the peak load of 62% of
new break load.  Figure 9 shows the core yarn of the core strand broken into short pieces,
between about 3 and 15 mm long, and long pieces, between about 70 and 150 mm long.  The
pieces at about 150 mm length show an unbroken buckle at the mid-point, so that the slip
length is about 70mm.   These lengths correspond to the half-wavelengths and slip lengths
computed in the previous section.

An HMPE (Dyneema) rope in a similar construction was unfailed after a million cycles at
20+19.5% break load with resin socket terminations.  Despite the very low minimum load
(0.5% of break load), this longer life could be attributed to a combination of lower peak load,
higher resistance to axial compression fatigue in HMPE, and the fact that this must have been
a well-made rope in a rigid termination.  Nevertheless, all the yarns showed evidence of
buckling.  Fig. 10(a) shows groups of buckles at intervals along all the yarns of an outer
strand, which retained between 40 and 95% of new strength.  Fig. 10(b) shows buckles in the
outer yarns of the core strand and breaks in the centre yarn.

From the UMIST SEM studies, which are reported in greater detail in Hearle et al (1998), Fig.
11 (a) shows the appearance of an aramid fibre extracted from the same Twaron rope as
specified above, but cycled at 40+20% break load for one million cycles.  Although the rope
had not failed, some yarn breaks had occurred.  The appearance at the unbroken end is similar
to that shown at the end of the sets of predicted buckle forms in Fig. 6.  The next more severe
bend has broken.  Figure 11(b) shows a Twaron fibre from a parallel yarn rope cycled at
40+25% break load without failing after one million cycles.  The higher magnification shows
up the internal kink bands within the fibre at the gross kinks in the fibre as a whole. 

A comprehensive and explicit quantitative recording of the buckle parameters was not carried
out in FIBRE TETHERS 2000 (1995).  However the above ranges of 3 to 15 mm for the half-
wavelength and 35 to 70 mm for the slip length are typical of what was seen.  Some of the
buckling appeared to be mode 1, but other examples had up to ten or more buckles in a group. 
Comparison with the predicted values in Tables IV and V suggest that the yarns tend towards
the solid rod case, which is not surprising in view of the lateral pressures.

5.0 CONCLUSIONS

The analysis of kinking presented here facilitates a treatment of restrained buckling within
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ropes and other fibre assemblies.  In tension members, axial compression occurs when some
components are under axial compressive loading, even though the whole assembly is under
tension.  In other situations, such as treading on carpets, the loading action may put the whole
of a localised part of the assembly into compression, but within a constrained surrounding of
other yarns.  Because oriented fibres have low compressive yield stress, which causes a low
plastic bending moment, the buckling results in sharp kinks, which fail after repeated cycling.  

The model, which follows earlier treatments of elastic buckling in pipelines, predicts that
groups of saw-tooth buckles will be separated by straight slip lengths.  The forces involved are
the axial compressive load, the frictional resistance to axial slip, and the lateral restraint of
radial pressure.  The yarn modulus and the friction coefficient have a role in determining the
displacement in the slip zone, which affects the axial compressive force, but the dominant
yarn properties are the bending stiffness, which sets the pattern of initial elastic buckling, and
the bending yield moment, which determines the formation of plastic hinges.  Unfortunately,
there is a wide range of possible values for these quantities, depending on the ease with which
fibres can slide over one another in the yarns.  The extremes range from that for the yarn
acting as a solid rod to the sum of the bending of the individual fibres.  There is also
uncertainty about the numerical values of some controlling parameters and about some
features of the model, such as the role of imperfections and the way in which the lateral
pressure operates.

While the analysis could be refined, its present accuracy may be close to the accuracy with
which systems can be defined, and it is debatable where further efforts could best be focussed
- on analytic refinements or the acquisition of better data.  Nonetheless, the present model
does reproduce the experimentally observed pattern of groups of closely spaced kinks
separated by undamaged areas which have unloaded into the adjacent buckle zones.  
Although the observed values of 3 to 15 mm for the half-wavelength and 35 to 70 mm for the
slip length are not entirely within the ranges of 0.25 to 10 mm and 1 to 35 mm respectively for
the predictions in Tables IV and V, the calculated sensitivities are such that it would not be
difficult to find a set of parameters to fit any observed results.
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Nomenclature

A cross-sectional area
c coefficients (Table 2)
d element diameter
E Young’s modulus
e end shortening, “endo”
I effective second moment of area
k coefficients (Table 1)
L buckle half-wavelength
ø overall length of buckle
Ls slip length
M moment
m pd/EI
n (P/EI)0.5

N number of fibres in yarn
P compressive axial load
p radial pressure on element
s inward slip to a buckle
x longitudinal coordinate
y displacement normal to x

∆ change in quantity
µ friction coefficient
θ plastic mechanism angle

Subscripts

o original, remote from buckle
p plastic
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s slip
^ peak
N derivative

Figure 1 Periodic and localised modes
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Figure 2 Details of lateral buckling
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Figure 3 Slip lengths and force distribution
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Figure 4 Geometry of elastic buckles
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Figure 5 Development of elastic-plastic periodic mode:  (a) at elastic limit;  (b)
incremental plastic mechanism
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Figure 6 Geometry of plastic localised modes.
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Figure 7 (a) Elastic buckling in perfect and imperfect situations.  (b) Corresponding
elasto-plastic buckling
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Figure 8 Predicted buckling for case specified in text: (a) solid rod; (b) free sliding
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Figure 9 Core yarn of a core strand in an aramid rope after axial
compression fatigue. (See details in text).

Figure 10 (a)Yarns of outer strand of an
HMPE rope after tension-tension cycling.  (b)
Yarns of core strand.  (See details in text).
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Figure 11 Fibres after tension-tension cycling.  (a) From aramid rope.
(b) From HMPE rope.  (See details in text).
 


